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Abslnc:t-By using the finite element method and a self·consistent theory, the effect of grain boundary
sliding on anelasticity of polycrystalline materials is analyzed. In the finite element calculations grains are
modeled by a two-dimensional array of regular hexagons in plane strain. A Newtonian viscous relation is
assigned to the grain boundaries. The ratio of the relaxed to the unrelaxed shear modulus. a,G and the
relaxation time associated with grain boundary relaxation are calculated as a function of Poisson's ratio and
the complex viscoelastic modulus is computed as a function of frequency. It is shown heuristically that the
two-dimensional plane strain results may reasonably approximate the corresponding three-dimensional
solution. In the self-consistent calculations it is assumed that the grains are spherical. The relation of this
theory with that of Zener (4) is established.

I. INTRODUCTION
When accommodated only by the elastic distortion of the grains themselves, viscous slip at
grain boundaries leads to anelastic behavior of polycrystalline metals at high temperatures. The
shearing stresses relax across the grain boundaries, but the relative motion of grains is hindered
at the corners where three grains meet. This relaxation of the shearing stresses gives rise to a
relaxed shear modulus Gwhich is less than G, the unrelaxed shear modulus. When a specimen
of polycrystalline material is subjected to cyclic loading, slip at the grain boundaries contributes
to the dissipation of mechanical energy into heat energy. Under steady state sinusoidal motion
of frequency til, the stress and strain at a point in the material are in general out of phase. The
behavior of the material is determined by the complex viscoelastic modulus. The ratio of the
imaginary part of the complex modulus to its real part is a measure of internal dissipation. In
thiS paper we use continuum models to estimate the ratio GIG and to calculate the complex
viscoelastic moduli as a function of frequency. For a comprehensive review of the literature see
[1-3]. We recall briefly the relevant existing theoretical results.

One of the earliest significant works on grain boundary sliding is that of Zener[4] who
attempted to calculate analytically the ratio of the relaxed to the unrelaxed elastic moduli. He
modeled the grains by elastic isotropic spheres and compared the elastic energy stored in an
individual grain under uniform stress with one under conditions of zero shearing stress across
the boundary, requiring the average of the stress tensor to be the same in each case. In this way
he obtained

G 2(7 +5,,)
G=5(7-4,,) (I)

where " is the Poisson's ratio of the grain material. An objection to this model is that it
represents the polycrystal as an aggregate of spherical grains. Topologically, spheres differ from
grains in two important ways, as far as the sliding at the boundary is concerned. Firstly, spheres
do not pack to fill the space and secondly they have no corners.

Since on the average the shape of the grains is very complicated, the construction of a
three-dimensional theory for grain boundary sliding with non-spherical grains is extremely
difficult. A possible approach is the self-consistent theory developed by O'Connell and
Budiansky[5,6]. They modeled the grain boundaries by randomly oriented flat cracks filled with
viscous fluid. Their analysis can be used to calculate GIG and the complex viscoelastic moduli
for various grain shapes.

Another approach is to model the grain structure by a two-dimensional array of regular
hexagons in plane strain as shown in Fig. 1. In Sections 2-4 of this paper we consider this
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Fig.!. Two-dimensional array of regular hexagons.

model. The material inside the grains is assumed to be linear and isotropically elastic. A
Newtonian viscous relation is assigned to the grain boundaries. Thus, along the boundaries the
shear stress at is related to the jump in the tangential component of the velocity [01], by

(2)

where 11 is the viscosity and w the thickness of the grain boundary. We use the finite element
method to calculate GIG and the complex viscoelastic moduli. Crossman and Ashby considered
the case when the material inside the grains is nonlinear. We have also performed calculations
in the nonlinear range. The results can be found in [8] and will be published in a separate paper.

Finally in Section 5, we shall consider the implications of a different kind of self-consistent
theory in which it is assumed that a grain behaves like a spherical inclusion in an infinite
medium called the matrix. The inclusion has the unrelaxed elastic properties, and the matrix,
the relaxed ones. Across the interface, the shearing stress vanishes and the normal component
of the displacement vector is continuous. We shall establish the relation of this theory to that of
Zener.

2. PRELIMINARY DISCUSSION

Consider the model polycrystal shown in Fig. I which is simply a two-dimensional array of
regular hexagons in plane strain. The overall macroscopic stress is uniform tension in the
x-direction. Because of the slip at the boundaries the local microscopic state of stress is
non-uniform. The normal component of the displacement vector must be continuous across the
grain boundaries, whereas its tangential component may suffer a jump. Also, no relative
displacement of the grains is allowed to take place at the corners.

Let us denote by region A the trapezoid OIPQ shown in Fig. I. If the state of stress in
region A is known, by symmetry it is also known everywhere in the entire array. Therefore,
provided one is able to derive the boundary conditions for region A and solve the resulting
boundary value problem, then the local stresses and strains (or strain rates) are everywhere
known.

The boundary conditions for region A will now be derived. By symmetry every side of the
rectangular region 01O'J in Fig. 1 remains straight as a result of an overall stress in the
X-direction. Furthermore, the shearing stress must vanish on every side. Let V(x, y) and
Vex, y) denote the displacements in the x and y directions. Assume at the origin, point 0,
V =V =0 and at the point 0', U =u and V =v. Then for region A

{ U~O 1x,=0 on Of

V=O 7x,= 0 on OQ (3)

V=v 1x,= 0 on fP.
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This gives the complete boundary conditions on 01, OQ and IP.
To derive the boundary conditions on PO, which are more complicated, we first need to find

a formula relating the displacement vector in the region H' (the trapezoid 0'lOP in Fig. I) to
that in region A. This formula is derived by using symmetry arguments. For a point (x, y) in B',
(a - x, b - y) is in A, where a and b are the length and the width of rectangle 0/0'1; then one
has

U(x, y) = -U(a - x, b - y)+u (x, y) in B' (4)

where U= Ui+ Vj and u=ui+ vj.
Now consider the boundary condition that the normal component of the displacement

vector must be continuous across PO. At a point T:(x, y) on PO, the normal displacement in
region A is U~A'(X, y) =U,.(x, y). At the same point but considered in B' by (4)

U~B"(X, y) =- U,.(a - x, b - y) +u,.

where u,. =V3u/2 + v/2 is the normal component of u. Therefore, setting U~A'(X, y) = UI,!J"(x, y)
one gets

(x,y) on PO. (5)

This equation expresses the requirement of continuity of normal displacement across the
boundary. It is a relation between the normal component of the displacement vector at points
T:(x, y) and T'(a - x, b - y) on the boundary. These two points are equidistant from M, where
M :(0/2, b/2) is the midpoint of the segment PO in Fig. 1. Similarly, we derive the following two
useful formulas which are not boundary conditions but will be used in the future. The condition
that no relative displacement is allowed at the triple points P and 0 gives

U(xp, b) +U(xQ' 0) =u. (6)

The jump in the tangential component of the displacement vector as one crosses the boundary
PO from region A to B' is

U~8"(X,y)- U~A'(X, y)= u, - U,(a -x, b - y)- U,(x,y) (7)

where u, =- u/2 +V3v/2 is the tangential component of u.
On each side of the region A, a normal and a tangential boundary condition must be

specified. For example, on 0/ by (3) U =0 and 1'~y = 0 are the normal and the tangential
boundary conditions. The tangential boundary condition on PO will be derived later. Consider
now the normal boundary condition on this side. Equation (5) is a condition for normal
displacement. But since this is only a relationship between normal displacements at two
different points on the boundary, it is not by itself sufficient. Another boundary condition in the
normal direction must be given.

Referring to Fig. I, from symmetry it can be shown that at points equidistant from M on the
boundary the traction v.ector must be equal, i.e.

{
u,.(X,y)= u,.(a-x, b-y) on PQ
O',(x, y) =O',(a - x, b - y)

(Sa)
(Sb)

where 0',. and 0'1 are the normal and the tangential components of the traction vector on PO.
Equation (8a) along with (5) constitutes the complete boundary condition in the normal
direction. In addition, the tangential boundary conditions on PO must be consistent with (8b).

3. RELAXED ELASTIC MODULI

In this section the ratio of the relaxed to the unrelaxed shear modulus, G/G; will be
calculated. The shearing stresses across the grain boundaries are completely relaxed. The
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tangential boundary condition on PQ of Fig. 1 is tT, =O. This. together with (3). (5). and (8a)
gives the complete boundary condition for region A except for one more small detail. These
boundary conditions must be consistent with an overall applied stress system iix = ii and
(fy =fxy =O. Since T,y =0 on every side of the representative rectangle 0/0'J in Fig. 1. the
condition f xy = 0 is obviously satisfied. Therefore one must have

(9)

iiy=.! f tTydx+.! f tTydx=O.
a )'P a)OQ

(10)

Evidently, (9) and (10) should be regarded as equations for the quantities u and v which appear
in the boundary conditions (3) and (5). In the following calculations it is more convenient to
specify v rather than ii,; then, (9) will be used to determine at> and (10) will be regarded as a
constraint that can be used to find u. Figure 2(a) shows the complete boundary conditions for
region A.

The plane-strain stress-strain relations for the material inside the grains are derived from
Hooke's law for an isotropic elastic solid, i.e. the equations

I II
£y =E(tTy - IIO'x) -E tT:

1 E
1,y =G 'T,y: G=2(1 + II)

(11)

and

(12)

It is obvious that the plane strain configuration of the hexagonal polycrystal. shown in Fig. I.
has a sixth order axis of symmetry along the z-axis. It can be shown that a linearly elastic solid
with an axis of symmetry of the sixth order is transversely isotropic with respect to that axis [9].
Therefore, the overall response of our idealized polycrystal is necessarily transversely isotro-
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Fig. 2. Boundary conditions. (a) complctcly relaxed. (b) complex.
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pic. In other words, the direction of an overall applied uniaxial stress is immaterial in this linear
analysis. The response of the polycrystal in the xy-plane is (from Hooke's law for a trans­
versely isotropic elastic solid)

_ 1(_ __) v_
Ex =E U'x - l'uy - If U',

(13)

- 1 - G- E
1xy= GTxy ; =2(1 + ii)

where E, ii, and Gare the relaxed elastic constants. In the z-direction no relaxation occurs and
(12) still holds.

In plane strain, with Ez = 0, (11) and (12) give, within the grains

I r?
Ez =E (O'x - PO'y) - E (O'x +O'y)

1 v2

Ey = If (O'y - PO'x) - E (O'x +O'y)

1 E
1xy =G Tx,; G =2(1 +v)'

Similarly, from (13) and (12) the overall plane strain equations are

- 1 C --) v
2
C + - )Ex = E O'x - PO', - E O'x 0',

_ 1 (_ __) v2
(_ + _)

E, =E 0', - PO'x - E O'x 0',

.v =1.;: . G=~
IX' G X" 2(1 + iif

(14)

(15)

Equations (14) and (15) indicate that it is not correct to represent the overall stress-strain
relations by simply putting a bar over every coefficient in (14); since the model is two­
dimensional, the coefficient of O'x +0', (i.e. v2

/ E) does not relax.
If the state of stress in the xy-plane is isotropic, i.e., O'x =0', and Tx, =0, then the shearing

stress on every plane vanishes and no relaxation occurs, so that O'x =iix =ii, = 0'" Ex = Ex =
E, = Ey and 1x, = 1x, = TX1 = 7x, = O. From (14) and (15) it follows that

(16)

This equation expresses the fact that the two-dimensional elastic bulk modulus is not affected
by grain boundary relaxation.

In terms of the quantities involved in the calculations, the overall strains are given by

\

_ U

Ex =;

_ V

Ey ="jj'

(17)

From (10) ii, =0, and iix is computed using (9). The first equation in (15) gives E as determined
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by the computed ratio ix!u.. i.e.

And from the second equation in (15)
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1
--~
E - !!.+~.:

U. E
(18)

(19)

Also the relaxed shear modulus Gmay be found from

- ii. - E
G =2(E. _ E

y
) or G=2(1 +;if (20)

In addition, these calculated quantities must satisfy eqn (16) as a check. t

The finite element solution
A finite element approach for plane strain analysis can be used to solve approximately the

elastostatic boundary value problem posed for region A. The details are given in part A.l of the
Appendix. The main difficulty is caused by the boundary conditions shown in Fig. 2(a). Since these
boundary conditions are rather uncommon, a general-purpose finite element program capable of
handling them is not available. In the next section we encounter boundary conditions even more
complicated than the ones seen here. In the appendix we describe a method that can be used to
implement all of these boundary conditions effectively. Application of this method requires some
extra programming effort but not much additional computer time.

Results and discussion
The finite element grid used is shown in Fig. 3(a). This grid has 756 constant strain triangular

elements per grain. (Notice that each quadrilateral in Fig. 3(a) is composed of four triangles.)
By using the much finer grid shown in Fig. 3(b), which has 1452 elements per grain, it was found
that the results for GIG remain essentially unchanged. In Fig. 4, the curve labeled (1) shows
GIG as a function of II, as found with the grid of Fig. 3(a). Point (X) was obtained in[8] by
means of a finite element program written for strictly incompressible materials. It can be seen
that this point is in complete agreement with curve (1) when II approaches ~. Point (*) is the
result of the finite element calculations by Crossman and Ashby[7].

The curve labeled (2) was obtained by Raj and Ashby [l0]. They used an approximate
method based on Fourier series. As will be shown at the end of the next section, the
Budiansky-O'Connell self-consistent analysis[5,6] applied to plane-strain hexagonal grains
gives a result which is almost identical to that of Raj and Ashby.

Having carried out these finite element calculations for two-dimensional grains, one is left
with the task of interpreting the results for three-dimensional grains. Some insight into this may
be gained by performing Zener's calculation in two dimensions for a circular grain in plane
strain rather than for a sphere and comparing the result with the Zener eqn (11). This
calculation is carried out in AJ of the Appendix. The result is plotted as the curve (3) in Fig. 4.
The Zener equation for spherical grains is curve (4). Over the usual range of Poisson's ratio of
0.3-0.4, the plane strain value for GIG is slightly larger than Zener's three dimensional result.
This suggests, at least heuristically, that a two-dimensional plane strain solution may indeed
reasonably approximate the corresponding three-dimensional solution as far as the ratio GIG is
concerned.

tin the above procedure an arbitrary value is assigned to v, but II is left free and solved for so that i, =O. In effect, E,
and i, are assiJned and i. and i. are computed. If an arbitrary value is assigned to II as well as to v, from (IO) it will be
found that i,;! O. Then Ex and i, are assigned and i. and i" computed; the first two CCl'!8tions in (IS) solved
simultaneously in terms of the assiJned (E. v, iXl ',) and the computed (i., i,) quantities give E and v. Although we
employed the former procedure, the latter is simpler to implement since in that case the cor.straint (l0) (u, = 0), need not
be imposed.
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Fig. 5. Relaxed Poisson's ratio and EJE vs II.

Figure 5 shows £1E and vas a function of v as computed by our finite element program.
These results satisfy eqn (l6) as a check. It can be seen that vappears to be very nearly a linear
function of v. Assuming v to be linear and using (l6), one finds

rIi,.. 0.83v +0.14

l§. ,.. O.83v-O.86.
E v-I

These equations describe the numerical results quite satisfactorily.

(21)

4. COMPLEX VISCOELASTIC MODULI
When the overall applied stress is a sinusoidal function of time with frequency w, all

quantities (displacements, stresses, etc.) are also sinusoidal functions of time with frequency w.
If no internal relaxation of any kind takes place, the strain must be in phase with the stress, but
as a result of relaxation the strain in general lags behind the stress. In our model there is only
one mechanism of internal relaxation operating in the material, i.e. the relaxation of shearing
stresses at the grain boundaries. The local stresses (i.e. the stresses inside the hexagonal grains)
remain In phase with the local strains.

It is convenient to introduce complex notation. Let a quantity, e.g. u, be of the form
u::: Ul cos wI +U2 sin tJJI. We shall write this as

I
u::: u R cos wI - er' sin tJJI ::: Re (u*), where

u*::: erc e- ::: (uR + ;uI}(cos wI +; sin tJJt), and

U C ::: uR +;u'.
(22)

The superscript C means complex and u R and u' are the real and the imaginary parts of u C•
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Grain boundary relaxation is significant in a frequency range for which the period is
comparable to the time of relaxation of shearing stresses. Since this relaxation time is relatively
large, the corresponding period is sufficiently large so that the inertia forces can be neglected
compared to the elastic forces in the grains and the viscous forces at tbe grain boundaries. Then
it can easily be seen tbat the complex displacements UC(x, y) and VC(x, y) satisfy the ordinary
plane strain equations of elastostatics. It only remains to derive the boundary conditions for
these displacements.

For the trapezoidal region O/PO shown in Fig. J, it can easily be seen that the boundary
conditions on 01, 00 and IP are obtained from (3) by adding the superscript C to every
variable. Similarly on PO, eqn (6) and the normal boundary conditions (5) and (8a) hold for the
corresponding complex quantities.

The tangential boundary condition on PO is obtained by substituting u1 = uf eioll and
U1 =Uf eioll (U1 = iwUf ei

"") in (2) and canceling eioll
; this gives

uf =iw!l. [Uf]
w

(23)

where from (7) the jump in the tangential component of the complex displacement vector
across PO is

(U~) =u~ - Uf(x, y) - Uf(a - x, b - y) (24)

and uf = - uC/2 +V3vc/2 is the tangential component of uC
• Equations (23) and (24) determine

the tangential boundary condition on PO.
In addition to the above boundary conditions we have the complex version of (9) and (10).

As in Section 3 an arbitrary real value will be assigned to vC and (10) will be used as an
equation for the determination of uC

• The complete boundary conditions in the complex form
are shown in Fig. 2(b). The complex boundary value problem for region A is now completely
defined.

The overall strains i;, i; are cal.culated by using the complex form of (17). By (10) 17; = 0
and 17; is calculated using (9). The maximum overall shearing stress is fC =(u; - 17;)/2 =c;c/2.
The maximum overall shearing strain is jC =i;- I;. Then,

(25)

is the complex shear modulus of the polycrystal.
At sufficiently low frequencies, w == 0, by (23) rC ... 0 and the boundary conditions on PO are

almost the same as in Section 3. The material is then essentially completely relaxed. Its
transversely isotropic constitutive equation is (15). On the other hand, at sufficiently high
frequencies since rC is finite, rC/w == 0 or by (23) [U fJ == O. That is, the jump in the tangential
component of the displacement vector across the boundary is nearly zero. The material is now
essentially completely unrelaxed. Its isotropic constitutive equation is (14). Therefore, at the
two extremes, for sufficiently large and sufficiently small w, the material is transversely
isotropic. At intermediate frequencies, using the concept of an operational tensor, it can be
shown that the polycrystal is still transversely isotropic[lI).

The transverse isotropy of the polycrystal implies that the overall and local responses to an
isotropic stress system (c;z = ii, and T.., =0) are the same. This fact can be used to derive the
following relation between the computed quantities i; and iif:

(26)

This equation, which is the counterpart of (16), is a check on calculations.

Finite element discretization
The finite element technique in this section, although more complicated, is very similar to



834 F. GHAHR£MANJ

that of Section 3. The grid shown in Fig. 3(a) is used again. Because of the boundary conditions
the computations must be carried out in complex mode. The complete details are given in A.2
of the Appendix.

Numerical results
We first briefly recall some concepts. The standard linear solid obeys an equation of the

form[l]

(27)

where the material constants T. and Ter are relaxation times at constant strain and stress
respectively, Gis the relaxed shear modulus, and a dot denotes differentiation with respect to
time. Substituting T* =TC e"'" and 1· ='Yc e""', canceling e"'" and using the definition T

C =
GC'Yc(Gc:: GR +;G/) one obtains the Debye equations

where G is the unrelaxed shear modulus,

G T.-=-G Ter

(28)

(29)

and 8O=G-G.
With the help of these formulas the result of the computations will be explained. Using (25)

one can calculate the complex shear modulus as a function of In (w). Figure 6(a) shows its
imaginary part for v = 0.35. The points computed by the finite element program are designated
by the circles. The frequency Wc at which 0 1 is a maximum can be determined numerically. For
v =0.35 it was found that wJ(EwITld) =1.1047, where wJ(Ewl",d) is nondimensional and d is
the length of a side of the hexagons.

On the other hand, for the standard linear solid, from (28) 0 1 can be written as

This has a maximum when WT. =1; therefore

1T.=-.
Wc

(30)

(31)

From Section 3 for v =0.35, 80/20 =0.08478. Equation (30) is plotted as the dashed curve in
Fig. 6(a). The close agreement between this curve and the computed points clearly indicates
that the model behaves like the standard linear solid. The three parameters G, G. and T.

completely define the standard linear solid. Since GIG was already calculated in Section 3,
calculation of T. completes the characterization of the material. Figure 6(b) shows the real part
of the complex shear modulus, GR, for the same value of vas in Fig. 6(a). Asmooth solid line is
drawn through the computed points.

Dimensional analysis shows that in addition to GIG there is essentially just one more
nondimensional quantity which is a function of v and may be chosen as

(32)

where D, the grain diameter, will be taken as the diameter of a circle whose area is the same as
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that of the hexagons, or

D=2d~e~3) (d=ia) (33)

The function h(v) =a as computed by the finite element program is plotted in Fig. 7(a).ln (32)
f, and fer were calculated using (31) and (29). The number a has also been calculated by other
authors. By a crude estimation Ke[12] and Nowic and Berry [13] give a =I. A somewhat more
sophisticated analysis by Smith[l4], quoted in[2], resulted in a =b.

Figure 7(b) shows the variation of fer and f, with II. It can be seen that these quantities are
rather weak functions of II.

Comparison with the O'Connell-Budiansky theory
The O'Connell-Budiansky self-consistent calculations[S] will now be carried out in plane

strain for hexagonal grains, and the results will be compared with ours. Consider a body
permeated by many randomly oriented straight cracks filled with a fluid of viscosity 11 (the grain
boundary viscosity). It is assumed that no fluid can flow out of any crack (saturated isolated
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case [5]). The cracks are thin ellipses with major axis d (the length of the side of a hexagon) and
minor axis h. The average width of an ellipse is the width of the grain boundary w, 1Thdl4 == wd
or h =4W/1T. As in[S}, first assuming the cracks are thin inclusions which contain material with
shear modulus 0, we find the effective elastic properties; then 0 will be replaced by ;wl1 to obtain
the complex viscoelastic moduli.

Let the overall state of stress be uniform tension in the y-direction, iiy == 0'. Then,
remembering that the effective stress-strain equations are transversely isotropic and are similar
to (15), one can write the energy balance equation as (see [6])

_Au2(.!. .. V) =.. Au2(.!._ V)+ af/J
2E.E 2EE

(34)

where A is the area of the body, E. is the effective Young's modulus and f:t.f/J is the potential
energy cbange as a result of the introduction of the random set of inclusions in the body. The
quantity f:t.f/J will be estimated by calculating the energy loss produced by a single isolated
inclusion in an infinite medium having the effective elastic properties. This loss in energy is[6]

(35)

where Al == 1Tdw/4 is the area of the inclusion, l' == 0' sin (J cos 8 is the resolved shear stress on
the surface of the inclusion whose major axis makes an angle (J with the x-axis, and f is the
shearing stress in the inclusion. This can be calculated from

~ A, =J(UXny +Uynx)dSI
G 51

where S, is the surface of the inClusion, n its unit outward normal and XY-axes coincide with
the principal axes of the inclusion. Whence

• l'
1'=

h 1
l+-'tpi

20d --­E. E

(36)
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Averaging (35) over all orientations, substituting G = iWTf into (34). and replacing E. by EC
, one

gets

S(w) = _--:-._~1-:-:::-----:­
1+1T1W."d (E _ 2)

2wE ~ II

(37)

(38)

and N is the number of cracks per unit area. For the hexagonal array shown in Fig. 2.
Nd2= 2/\13. Using GC =EC/2(1 + l,c) and (16), i.e. ECI(1- IIC) =EI(1- II), one finds

GC 11+ 1
(f= 2E'

(II-l)+~

(39)

For w = 0, (39) gives the ratio of the completely relaxed to the unrelaxed shear modulus, GIG.
As we mentioned at the end of Section 3. this result is almost identical to that of Raj and
Ashby, see Fig. 3.

The imaginary part of GCIG is plotted in Fig. 6(a). It can be seen that the maximum of G'
occurs at a value of w slightly less than that for finite element results. For comparison, a Debye
peak is also fitted to the self·consistent results. This is done by using (30) and (31), where
WIG =1- GIG is given by (39) at w =0 and We is the approximate frequency at which GIIG is
a maximum.

5. A SELF-eONSISTENT THEORY FOR SPHERICAL GRAINS
The self-consistent theory has been successfully used to predict the macroscopic properties

Qf polycrystalline aggregates from the knowledge of single crystal behavior. It has also been
applied to composite materials. For a list of references see [5, 6, 15-19]. In this section we
consider a self-consistent theory for grain boundary sliding. It is assumed that the grain material
is linear elastic and isotropic. Our purpose is to find GIG as a function of v when the grain
boundaries slide freely.

Energetic approach
The arguments of the self-consistent theory will be given along the same lines as

Eshelby[l9}. Consider a large homogeneous body with elastic constants Gand ii. First assume
a uniform tension, ii. =P, as the macroscopic state of stress. Let, simultaneously, a small
spherical portion of the material be replaced by a spherical inhomogeneity of exactly the same
size but with the local constants G and v. Across the interface, the shearing stress is to vanish
and the normal displacement is to be continuous: We demand that there be no net change of
strain energy as a result of this process. This provides one equation relating G, ii to G, II. Next,
let the overall state of stress be hydrostatic. Then, no sliding will occur in the polycrystal since
the shearing stress is zero everywhere. Therefore, the relaxed elastic bulk modulus, K, is the
same as the unrelaxed, K

K=K GO +v) G(1 +v)
or 1-2ii = 1-211' (40)

This gives the second equation relating G, ii to G, v.
The above stated change in energy is the interaction energy of the inhomogeneity with the

applied stress. In the classical approach to the self-consistent method, Eshelby's inhomogeneity
problem[l9] is used to calculate this interaction energy. But this is not possible in the present
case since in Eshelby's problem the interface between the inhomogeneity and the matrix is
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(o) ( b) (e)

Fig. 8. (a) Definition of V" Vo and V., (b) spherical coordinates, (c:) boundary conditions.

welded (no sliding being possible) whereas here this interface is free to slide. Therefore, the
following auxiliary problem must first be solved.

Let (r, 6, q,) denote the spherical coordinates as shown in Fig. 8(b). In region r < '0' which will
be referred to as the inhomogeneity or the inclusion, the elastic constants are G and v. In , > '0,
which will be called the matrix, the elastic constants are Gand ii. The state of stress at , =og is
uniform tension in the z-direction, er; = P. The boundary conditions at , = '0 are that T,. =0and
that the normal component of the displacement and traction vectors be continuous across the
boundary. Notice that because of axial symmetry TJ+ =0 everywhere.

The solution to this problem is obtained by using Papkovich-Neuber harmonic potentials.
Expressing the prescribed stresses on the boundary in terms of spherical harmonics, one
obtains the solution for the stresses and displacements also in terms of spherical harmonics.
This solution consists of two parts: the solutions to the internal problem for the solid sphere
and to the external problem for the elastic space outside the spherical inclusion. The details are
given in A.4 of the Appendix.

Returning again to the self-consistent analysis, let the uniform stress at infinity be denoted
by erij; then Eij is related to erq by Eij =MiIil"ij, where Ml/il is the compliance of the matrix. The
condition that the relaxed spherical inclusion gives rise to no net change in energy is

(41)

where V, is the region occupied by a sphere of radius ,; see Fig. 8(a). We will use the auxiliary
solution to explicitly evaluate eqn (41), but first it is convenient to transform this equation into a
form which is more amenable to calculations.

It can be shown that eqn (41) is equivalent to

(42)

(43)

where Voand So are the volume and the surface of the inclusion and the superscript (e) means
external. But since er33 = P and erij =ootherwise, (42) becomes

_-Pi J erx dV + GP J er: dV +P J u~e)n3 dS - Vo _ p2 = O.
G(1 + ii) Vo 2 (l + ii) Vo So G(l + ii)

This equation, which can easily be evaluated in terms of v, ii, G, and Gby using the auxiliary
solution, is the desired form of (41).

Evaluation of various terms in (43) involves long but straightforward calculations. By using
appropriate formulas, the volume integrals must first be converted into integrals over the
surface of the sphere. Then, substituting the values for stresses and displacements from the
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auxiliary solution and performing the integrations, after considerable algebra one arrives at
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({1 + p)(l- 2ii)+ ~ (1 + ii)(1- 2p)] 2~Ao+

[(7 + 5v) ~~~~ +4(7 - 4v) g] OroA;~ + ii) - 3(1 + ii) . 71~iii + 1=0 (44)

where Aoand A2areconstants given in (A.28) and (AJO). Equation (44) is one relation between P, ii,
G, and G. The second relation is (40). Solving these two equations simultaneously and simplifying
the results substantially, one obtains

{

G 7+5v
0=4(7-4p)

ii = 4(7 - 4p)(I + p) - (7 + 5v)(1 - 2p)
8(7-4v)(I + v)+(7+5v)(1-2v)'

(45)

These give the final result. It is interesting to note that GIG as given by tbe above equations is
exactly i times the result obtained from Zener's eqn (1). For P =i, (45) gives GIG =0.38. This
value for GIG is smaller than that predicted by experiments on equiaxial polycrystals with
uniform grain size[4, 13,20]. This is caused by the absence of geometrical impediments (such as
srain comers) to sliding at the boundary of a spherical grain. In the classical self-consistent
theory where no sliding takes place, the assumption of spherical grains leads to plausible
results; but here this assumption leads to a great overestimation of the extent of relaxation
caused by grain boundary sliding. Here the properties of the surface are critical.

Slrrss and strain Qveraging
Expressions for average stress and strain inside a homogeneous body which contains N

surfaces S.(a =I, N) along which the shearing traction vanishes have been derived in[8]. It is
shown that the average stress is

iTjj = ~ Iv O'jj dV

where V is the volume of the body. The average strain on the other hand is given by

ill = vII flldV+ f ( -2
1[(ut- Ui)nj+(Uj- Uj)ntldS;

v ..-I Js+

(46)

(47)

where S: is the side of S" whose unit normal is n+. The second term, which depends on the
jump in the tangential component of the displacement across S,,(a =I, N), is the contribution
to total strain due to sliding.

Now instead of using (41) as the self-consistent criterion we use the alternative postulate

(48)

i.e. we require that stress at infinity be the same as the average stress in the inclusion. But
u» ... P and O'i =0 otherwise. Setting the averaaes over the inclusion of 0', and u, respectively
equal to PandO, convertiDa the volume intepals into surface integrals, using the auxiliary
solution, and carryina out the intearations, one obtains a system of two equations and two
unknowns. (Notice tbat the averages of ulJ for i¢ j vanisb identically.) The solution of this
system is the same as (45). Thus the stress averaging approach is completely equivalent to the
enersetic statement of the self-consistent theory.

It can easily be established tbat the strain averaging approach is also equivalent to the
enersetic approach. In fact, by using the energy criterion (41) we arrived at (42), but by what
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has been said, (42) and (48) are satisfied simultaneously. Substituting (48) into (42) and
simplifying, one gets

,.,.~=.ll E.. dv+.ll1[(utel - U(il)n·+(U(el- U(iI)n·]dS
vII t! 11 II 2 I I 1 1 1 I

"0 Vo "0 So
(49)

where superscript (e) and (i) mean external and internal and n is the unit outward normal to the
surface of the inclusion. Now, comparing (49) with (47) we see that (49) is, indeed, the
expression of self-consistent criterion for strain averaging. It states that strain at infinity is
equal to the average strain in the inclusion plus a term which depends on the jump in the
tangential displacement across the boundary. This term is the contribution to total strain due to
sliding.

Therefore, the three approaches (energy, stress, and strain) lead to one and the same result,
hence justifying the designation "self-consistent". This situation is reminiscent of a similar
circumstance in the classical self-consistent theory, where it was proved by Hill(15] that these
various approaches are equivalent.

Connection between the Zener and the self-consistent theories
Consider the equation

(50)

where Vr is the volume of sphere with radius , (see Fig. 8a), (Tii is the average stress over V"
Eii = Miik,uklt Eli = M;jklUklt and Mikl and M,jkl are the overall and the local compliances. Letting
,= '0, (50) becomes the same as Zener's method applied to the inclusion. Using the solution to
the internal problem in AA after a lengthy but straightforward calculation, one can show that
(50) (for, = (0) leads exactly to Zener's result, i.e. eqn (1). (This is so in spite of the fact that the
state of stress for Zener's solution[4] is different from that obtained from the solution to the
internal problem.) However, as r increases it is obvious that (Tii approaches u'ij, and (50)
becomes the same as the self-consistent eqn (41). In fact, by only letting, =1.5 '0 it was found
numerically that (50) gives a solution which is to within one percent of the self-consistent result
(45). Therefore, the self-consistent theory is seen to be the same as Zener's method applied to
the polycrystal as a whole and not to an isolated grain. The connection between the two
theories is thus established.
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APPENDIX

A.I Finite dement calculations for linear analysis
The grid used in the calculations is shown in Fig. 3(a). II consists of constant strain triangles and quadrilaterals made up

of four such triangles. Figure 3(c) shows a typical quadrilateral element. Coordinates of point M are the averages of
coordinates of points A. B. C and D. After finding the lOx 10 stilfness matrix of this element. node Mis condensed[23)
and the stillness matrix of the quadrilateral is obtained in terms of the displacements at the four corner nodes. The element
stilfness matrices are then assembled according to the direct stilfness method to obtain the overall stilfness matrix [K}. The
element and the overall stilfness matrices (which are symmetric and positive definite) and load vectors are consistent with
the principle of minimum potential energy. The equilibrium equation for the assemblage is

[K){q} = {Q} (A.I)

where {q} and {Q} are the vector of nodal displacements and the load vector. respectively. The details of the derivation of
this equation will not be given here since they can be found in numerous text-books on finite element method. e.g. [23.24).

The boundary conditions (3) can be implemented easily by the usual methods. For example. for nodes on IP of Fig.
2(a). to apply 1"1 =0 we simply make the tangential component of the load vector on these nodes equal to zero. To
implement V = v for degree of freedom i say. qi = v. we first modify ~he load vector according to

(A.2)

Then the i-th row and the i-th column of the stiffness matrix are made zero and the diagonal element. Kii• is made unity.
according to standard procedures.

From the form of the boundary conditions on PO. shown in Fig. 2(a}. it follows that nodes on this side must be ananged
in pairs of points equidistant from M. With the exception of nodes at P and Q, the degrees of freedom at all other nodes on
PQ must be referred to the normal and tangential directions. (These statements are true also for the finite element grids
used in the next section.) The tangential boundary condition. (f, =0. can be imposed in the usual manner. We now explain
the application of the normal boundary conditions. For definiteness we consider a typical arrangement of nodes on PQ
shown in Fig. 3(d). Introduce the notation

F.(i). F.(i) force in the x and y directions on node i
F.W, F,(i) force in the normal and the tangential directions on node i
U(i). V(i) displacements in the x and y directions on node i
U.(i). U,(i) displacements in the normal and the tangential directions on node i
qi = U(1}, q2 = V(1}. Q) = U.(2), q." U,(2) . ..

Q, = F.(1}, Q2 = Fy(l). Q) = F.{2). Q. = F,(2). .. (A.3)

With this notation. in terms of the nodal displacements. (S) and (6) become

Similarly (Sa) for the traction gives

{

U(1}+ U(6) = u

V3 I
U.(2) +U.(S) =T u+2 v

V3 I
U.(3}+ U.(4)=Tu+2 v.

IF.(1) = F.(6}

F.{2) .. F.{S)

F.(3} =F.(4).

(A.4)

(A.S)

Equations (A.4) and (A.S) are the discretized form of the boundary conditions for the particular grid shown in Fig. 3(d).
The discretized form of the constraint (l0) is

Ly-reactions at nodes on Ip·~ y-reactions at nodes on OQ =O. (A.6)
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where I denotes the sum. Reactions at nodes on /P and OQ (see Fig. 3d) are related to nodal displacements by eqn IA.I).
Therefore using (A.I) one can write (A.6) as a constraint on the displacement vector, q, i.e.

(A.7)

(A.8)

where N is the total number of degrees of freedom. This equation together with (A.4) and (A.5) completely define the
boundary value problem in discretized form.

We now explain the method for imposing the boundary conditions. Consistent with (A.5) introduce the notation

t
AI!IlI F.(I) = F,(6)

A2 III F.(2) = F.(5)

A) !Ill F.(3) =F.(4)

where the grid shown in Fig. 3(d) will be used to illustrate the method. By virtue of the linearity of the problem, the
displacement qi is a linear function of Ai' i.e.

(A.9)

where a. are the displacement inftuence coellicients. Therefore. in order to calculate {qO} we solve (A.!) when
AI = A2 = A)=O. SimiJarly. a/l. i = t.N are calculated by sotvina (A.t) when AI=I and A2=A3 =0 and so on.

This procedure requires repeated solution of (A.t) for different load vectors. This can be done by first usins the
Choleski's method to decompose the doess matrix into upper and lower trianautar matrices. Then. each time the load
vector is changed, it is only necessary to carry out the back and forward substitUtions. The computer time required to
decompose the stiffness matrix is by far more than that spent on back and forward substitutions. Therefore, this process
increases the cost of computations only slightly.

After calculating the inftuence coellk:ients. aijo and vector {qll). eqns (A.9) are inserted into (A.4) and (A.7) to obtain a
system of four equations for the determination of AIt A2. A3• and II. Salvina this system and substitutina the result in (A.9).
we calculate the nodal displacements and hence complete the solution of the problem. In the above discussions. for
definiteness we considered the grid shown in Fig. 3(d). For a finer grid the method is exactly the same.

A.2 Details of the finite element technique for viscoelastic analysis
The grid is the same as before; see Fig. 3(a). Since the material inside the grains is elastic, the stiffness matrix remains

real and is the same as before. The load vector. on the other hand is complex. resultins in a complex displacement vector
as well. The equilibrium equation. now, is

(A.10)

where {qC) .. {qJl} + i{ql} and {QC} ={QR} +i{QI} are the complex displacement and load vectors.
For definiteness we explain the boundary conditions by considerins the simple arid shown in Pia. 3(d). On 00, 01, and

OP the boundary conditions can be applied easily by ordinary methods; see eqn (A.2). On PQ usins (A,), in the normal
direction one finds

and

UC(I)+ UC(6) = uC

U~+U~(5)= ~3uc+ivc

'1/3 I
U;(3)+ U~(4)"Tuc +2 vC

!
Fi(l) .. Ff(6)
F~(2) .. F~(5)

F~(3) .. Fi(4)

(A.1l)

(A.l2)

where (5). (6) and (Sa) are used.
To discretize the tangential boundary condition (23). we first recall an elementary result. Assumins that the shearing

stress Ut varies linearly between two successive nodes i and j on the boundary, the contnllution to the tangential nodal
forces due to the traction on the segment ij is[23]

!,,/<),/("'j')+"'~))

F/{J) =: t(Utii)+(11)
(A.!3)

where u,(i) and Ut{J) are the values of Ut at nodes i and j; and I is the length of the segment ij. Referring back to the
particular grid in Fig. 3(d). it can be seen that at nodes (I) and (6) uf = 0, since at these nodes the discontinuity in the
tangential displacement across the boundary vanishes. Using (A.!), (A.23). and (24), one obtains the discretized form of
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the tangential boundary condition on PO as

Ff(2) =iw;{(~+~)[-2
1

U
C+~\c - Uf(2)- Uf(5)]

+~[-21 U
C +~3 vC

- Uf(3)- Uf(4)]}

Ff(3)=iw;{~[;1 U
C +~3 vC

- U~(2)- U~(5)]

+(~+~)[;1 UC+~3 vC - U~(3)- U~(4)]}

{
Ff(S) =Ff(2)

Ff(4) = Ff(3)

where 1,,12,1, are, respectively. the distances between the nodes I and 2. 2 and 3, 3 and 4 on the boundary PQ.
The constraint (10) leads to
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(A. 14)

(AJS)

(AJ6)

Derivation of this parallels that of (A.7). The coefficients C. in (A.16) are exactly the same as in (A.?). The finite element
version of the boundary value problem is now completely defined.

To incorporate the boundary conditions on PQ, the method used in the previous section will be utilized. Let Ar(i = 1,5)
be defined as

The displacements qf are then given by

Af = F;(I) == F;(6)

Af =F~(2) == F~(S)
Af =F~(3) == F~(4)
Ai =Ff(2)== Ff(S)

Af = Ff(3) == Ff(4).

qf = ~ ai.\Af+q?f:.

(A. I?)

(A. IS)

~ .coefficients aj; and the vector {qllJ turn out to be real. To calculate tbem, exacUy the same method as before can be
used. That is, we first set A; =0 (i = 1,5) and solve (AJO)to calculate {qO). Next we setAl = I and AI =0 otherwise to find
alj (i = I, N) and so on. Substituting (A.l8) into (A. I I), (A.14), and (AJ6), a system consisting of six complex equations is
obtained for the determination of Af (i = 1,5) and uC• After solving this system, from (A.l8) the nodal displacements are
known and the problem is solved. If III is changed, only the boundary condition (A.14) is affected; all other equations,
includilll (A.l8) remain the same. Therefore to find the response of the material, one only has to repeatedly solve tbe
above 6 by 6complex system for diferent values of w. The above discussions were made in reference to the simple mesh
shown in FiJ. 3(d). For the grid actually used in calculations (Fig. 3a) the method is exacUy the same.

AJ ZtIIt,'s calculations ill two dimt1lSions
Assuming that the grains are circles in plane strain rather than spheres, Zener's calculations will be carried out.

Consider the region inside the circle with radius '0- The center of the circle coincides with the origin of the xy-p1ane, and
the malerial inside it is linear and isotropically elastic.

Corresponding to the three solutions of Zener[4J. we superimpose three solutions: (I) a uniform stress CT, =P and all
other components of the stress vanishilll, (II) a solution so chosen as to neutralize the shearilll stress due to solution (I) at
, = " and (III) a solution so chosen as to neutralize the average of CT. introduced by (II). In order that no new shearing
stresses be introduced at , = ro. the third solution must be isotropic in the xy-plane (i.e. O'~I = O'~I and ,.~; =0).

We solve this problem by superposition using Muskhelishvili's complex potentials. The solution is

{

~(Z)"p~Z; .II(Z) =~i~; .1Il(Z)== -: Z
(A.19l

IMZ) = '2 Z; ';n(Z)" 0; !/f1ll(Z) =0

where the .'5 and the "5 are re.ular functions of the complex variable Z .. x+ iy, and i .. Y-I. Using standard formulas
from(21) to calculate the stresses produced by (A.19), one may easily verify that (A.19) Jives the solution. The complete
solution, • =.1 +.n+~II and ", .. "'I +~I+"III is

(A.20l
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The average elastic energy per grain is

- I f I I (
W '" A A2cra~Ea~ dA '" 2A Jr cr,V, dS (a.1J '" 1,2) (A.21)

where A is the area of the circle and r its contour. Using the solution (A.20) and carrying out the integration". one finds

W- '" p~. (9-lOv)(1 +v)
48 E • IA.221

(A.231

On the other hand, the macroscopic strain energy per unit area is IV = iiyi.)2, where ii, is the average of cry over A and

i "'(~-~)ii
• E E .,.

This last relation is obtained from (15) by noting that the overall response is transversely isotropic as we have explained
before (see comments following eqn IS). Using the solution (A.20), one gets

u.",*L crydA=~Jrcr,n~dS=~

and therefore

IA.24)

S!lting the microscopic and the macroscopic expression for IV (eqns A22 and A.24) equal to each other and solving
for E/E, one gets

E 6'
E= 9-v-4,,2'

Using (6) and (A.2S) together with G = E/20 +v), one obtains the final result

This expression is plotted as the curve labelled (3) in Fig. 4.

IA.2S)

IA.26)

A.4 Solution of the allXiliary problem
An isotropic elastic medium, containing a spherical region (the inclusion) with different elastic: constants than those of

the remainder, is subjected to uniform tension at infinity, Across the interface the shearing stress vanishes and the norma!
displacement is continuous; see Fig. 8{c). The objective is to find the state of stress, the displacements, etc. everywhere.

The two-dimensional version of this problem is solved in the book by MusKhelishvili{2ll, Article 58. The three·
dimensional problem win be solved by superposition making use of a general form for the solution of the problem of the
equilibrium ofasymmetrically loaded elastic sphere, constructed in thebook byLur'e[221, 1JII'te·DimtllsjOft4lProblems0/the
Theory 0/ Elasticity, Chapter 6.

Let the elastic constants of the matrix be (j and ii and those of the inclusion G and v. Let the radius of the sphere be '0
and its center coincide with the origin. First the problem of a spherical cavity in an infinite medium with uniform tension at
infinity will be solved. It win be noticed that at r'" '0 (i.e. on the surface of the cavity) the normal displacement U, due to
this solution is of the form U, '" aoPO<~)+a2N~), where ao and a2 are constants and PJ.~)", I, P2(~)"'13~2_1)/2 are
the Legendre polynomials of order zero and two and ~ = cos 8. For II"0,1, 2, ••• the above mentioned general
representation has the property that an applied stress (1, '" (1.p.{~)on the boundary (of the cavity or of the solid sphere)
leads to displacements U, proportional to p.(~). and solutions for difterentll are completely uncoupled from each other.
We apply a stress (1, '" tToPo<p.)+tT2P2lP.) at, = '0 both to the interior of the cavity and to the surface of the solid sphere;
0'0 and tT2 will then be so chosen as to make U, continuous at ,., r. At this staae at , '" '00 ",. .. 0, and U, and 0', are
continuous. Every condition is therefore satisfied. and the problem is completely solved. We give the final results; for more
details see [8].

Intemal problem
The solution to the internal problem is composed of two parts. The first part is

IU,"'-2AJ,1-2"),, U,=O

tT, '" 0', = 0'" = -4GAJ,1 + v), ",. =0

where

-P(l-ii)
Ao= 4(i+v)[{ZO+G)+v(G-4(j)]'

(A2')

(A.28)



The second part is

where

Ellect of grain boundary sliding on anelasticity of polycrystals

u, = (I2A,r3v+2B,1lP,(IL)

U, = [A,r3(7 - 4v) +B,ll ~'

I
2G u, = [-6A,rl' +2B,IP,(IL)

1 -' 2 dPz2G 1'" = [A,r(7+ v)+ B,lliB

845

(A.29)

(A.30)

Similar but somewhat more involved expressions hold for u. and 0', which we shall not write since they will not be used.

Extemal problem
The solution to the external problem consists of three parts. The first part is due to the uniform state of stress O'z = P

U" = -;:.!..- (iixl+ iiyj - zk)
2G(1 + ii}

where I. j and k are unit vectors in the x. y. and z-directions. The N:omponent of (A,3!) is

U",=Pl o[I-2ji Pr/..P.)+2P,(p.)] (p.=cos8)., 6a l+ii

The components of the stress tensor are

{
0': =Pcos' 8. 0'; =P sin' 8

1':1 = - P sin 8cos 8,0'; =O.

The second part is

\

u,=-~. U,=O. O',=~

IT, =0'. =- 2~.60, 1'" = 0

where .60 = Do+~. Do = - Pra/12a,~= - Aor3r/..l +v)Gla and Ao is given in (A.28).
The third part is

{

c' 5P Ii D' P ro
2= 12G' 7-5ii; 2= 2(} 7-5ii

G 7+51' G l+ii
C2• -::. --,-'gA2: Dz =----(7 +5,,)r~2'

G 7-Sii 2G 7-Sii

(A.3!)

(A,32)

(A,33)

(A.34)

(A,35)

(A.36)

Expressions for (/, and IT. are not written.
This completes the solution of the auxiliary problem. In contrast to £Shelby's probJem[l9J, for which the state of stress

in the inclusion is uniform. in the present case the stresses are composed of a uniform part and a part which varies with r
like r.


